
Calculus in Ten J.R.Regester 1 
       ver: 27Aug2008  

Calculus in Ten  
(pages, that is) 

 
 Presented here is a quick and dirty primer to calculus.  'Quick and dirty' because we won't be 
proving all of the results that are discussed, but will instead rely in many places on analogy, intuition, and 
plausible arguments. Because of this non-rigorous approach, you will have to trust that I am not lying to 
you. You will see (or perhaps already have seen) the rigorous development of calculus in your math 
classes, including many topics that we won't touch on at all here. The purpose of these ten pages is to 
allow you to dive right in and start using basic calculus. 
 

The derivative 

 The slope of a line is usually first introduced as the ratio ri se
run . It describes how steep the line is. 

The 'run' we can better symbolize as x xhigh xlow
, and the 'rise' as f f(xhigh) f(xlow). (The 

symbol  means that the two expressions are equal by definition, not because we've proven anything.) 

The slope is therefore f
x . The standard function of a straight line is f(x) mx b , where m is the 

slope. Some examples:  

r ise

run

m=1 m=1 m=3 m=-0.8 m=0  
 The slope of a straight line is the same no matter 
where you measure it. Now, how can we define the slope of 
a function that is not a straight line? Let's say we have the 

function f (x) x
2
: a graph is to the right. The steepness 

of the function depends (unlike the case of a linear 
function) on where you measure it. The slope is different at 
x=0 than at x=0.5, which is different than at x=1 (slope is 
steeper) that at x=-1 (slope is negative). Let's say we want 
to find the slope of the curve at x=0.33. How can we 
determine the function's steepness there? 
 We can do that by drawing a straight line between the 
function at x=0.33 and some other point on the graph, at 
x=0.33+ε. That is shown on the right-hand graph above. The 
slope of that line is 
f

x

f (0.33 ) f (0.33)

(0.33 ) 0.33

f (0.33 ) f (0.33)

(0.33 )2 (0.33)2 0.332 2(0.33) 2 0.332

0.66
 

Now, let's take the limit of this, as ε gets smaller and smaller. 

As ε goes to zero, Δf and Δx become infinitely small (infinitesimal is the adjective), and the line 
becomes tangent to the function, with slope equal to 0.66. We see that the slope of the function at the 
point x=0.66 is the slope of a straight line that is tangent to the function at that point. This limit is called 

the derivative. The process is called "taking the derivative" or, more succinctly, differentiation. Rather 

than always writing it as a limit, a new notation will be used. The derivative is written as 
df

dx , just like the 

slope of a straight line was written as 
f

x .  
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df

dx x
lim

0

f

x
lim

0

f (x ) f (x)
 

Let's find the derivative of f(x)=x2 for any x (instead of only at x=0.33): 

  

f

x

f(x ) f(x)

(x ) x

f(x ) f(x)

(x )2 (x)2 x2 2x 2 x2

2x

df

dx
lim

0

f

x
lim

0
(2x ) 2x

 

 Here we can see that the slope of x2 at x=1 is 2, at x=0.5 the slope is 1.0, and at x=0.33 the slope 
is 0.66 (as we found above.) In the real world, one rarely goes through that whole process to find the 
derivative of a function — you can learn a few rules of differentiation that allow you to easily find the 
derivative for many different functions. We'll come back to these techniques after we've discussed 

integration.  
 

Exercises  At this point, please do exercises 1 and 2. 

 

The Integral 
 Consider the function f(x)=2x. Here's a graph of it, from x=0 
to x=1. (The slope of the line is 2, even though it doesn't appear so 
on the graph: the scales are different on the two axes.) Let's say we 
want to find the area under the graph of f(x), from x=0 to x=1. We 
can do that by adding together the areas of the slices ΔA

1
, ΔA

2
, and 

ΔA
3.  Clearly, the total area A is just the sum of the individual slices:   

A=ΔA1+ΔA2+ΔA3. Another way to write that is using the 

summation symbol, an upper-case Greek sigma. 

   A Ai
i 1

3

.  

 How do we know what those areas are? We could use the 
equation for the area of a trapezoid for each, but that is awfully 
complicated. Let's fudge a little, and just pretend that the area of each 
slice is the width of the slice, Δx, times the height, f(x), as if it were a 
rectangle. Now another question arises: what do we use for the 
height of each "rectangle", the right-hand edge or the left-hand edge? 
Let's not worry about it at the moment, and just use the right-hand 
edge. (We'll soon see that it doesn't matter.) 

  The area of each rectangle is Ai f(xi) x . If we're 

dividing the width into three pieces, then x 1
3 , and x

1
=0.33, 

x
2
=0.67, and x

3
=1.00. Then 

   A Ai

i 1

3

 

The  symbol means "approximately equal to."   

A
1

A
2

A
3

 

excess 

a rea
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 It is apparent that by adding together the areas of these 
rectangles that we are overestimating the area under the curve: each 
rectangle has that small dog-ear above the function. That's the reason 
we used the "approximately equal to" symbol. We can alleviate this 
problem by, instead of using only three rectangles, using six instead. 

A Ai
i 1

6

. Each rectangle's area is still Ai f(xi) x , but now 

x 1
6 ,and there are twice as many slices, each of which is half as 

wide. The excess area of the rectangles is less, and their sum is a 
better approximation to the actual area underneath the function. 
 
 We can do still better by using even more rectangles, say 12, 
or 24 (as shown to the right). Why stop there? Carrying this process 
to the extreme, we can add together an infinite number of rectangles. 
Each one of these rectangles is infinitely thin, and therefore has zero 
area.  
 
Technically, the phrasing I am using here is a mathematical travesty. 
What we're really doing is taking a limit of the sum, as the number of 

rectangles increases without bound: A lim
n

Ai

i 1

n

. But my crude 

language does have advantages (brevity, most importantly) so I will 
continue to use it. If an individual rectangle becomes infinitely thin 
as we increase their number, there can be no difference between its 
height on the left-hand and right-hand edges — so it really did not matter which side we used for the 
height of the slice. 
 Recall that d's are used (instead of Δ's) to denote infinitesimal quantities. The area underneath the 
graph is the sum of infinitely many slices, each of which has infinitesimal area. The infinitesimal area of 
each 'rectangle' is dA. Rather than using Σ, we use a different symbol for the summation process —  

   A dA 

What is dA? The area of each rectangle is its height, f(x), times its width. Originally we called the width 
Δx, but because the number of rectangles is now infinite, the width of each one is infinitesimal — 

namely, dx. The area, then, must be dA f(x)dx . Substituting in this expression for dA, we have 

   A f(x)dx  

We can use the equals sign now, because this is an exact determination of the area, not an approximation. 
The ∫ symbol was originated by Gottfried Wilhelm Leibniz (who, along with Isaac Newton, is considered 
the co-inventor of calculus) in 1675. It is a tall form of the letter s , for 'summation.'  
 

The Connection Between Integrals and Derivatives 
 Recall that the (infinitesimal) area of each tiny rectangle was its height times its width: 

   dA f (x)dx  

If we divide both sides by dx, we have the derivative of the area. 

   
dA

dx
f (x) 

 Let's now return to our example, 
dA

dx
f (x) 2x. Well, what function has the derivative 2x? It 

was the function we looked at when defining the derivative, x2! The derivative of x2 is 2x, and the 

less 

excess 

a rea
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integral of 2x is x2. Clearly, integration and differentiation are inverse operations, like addition and 

subtraction, or sin and arcsin. The function x2 is a graph of the area under the line f(x)=2x from zero to 

x. So the area from x=0 to x=1 is 1. It makes sense that x2 gets bigger going to the right, because there's 

more area under the line 2x from zero to larger and larger x's. It also makes sense that x2 get steeper, 
because as you move rightward under the line f(x)=2x, you are adding increasingly more area for every 
step to the right. 
  

Definite versus Indefinite Integrals 

 In regard to integrals, I've left an important distinction vague up 'til now: that between definite 

and indefinite integrals. If you want to find the area under the function f(x), clearly you need to specify 
the left-hand and right-hand boundaries of that area. In the example I was using, f(x)=2x, the unstated 
assumption was that these boundaries were x=0 on the left, and x=1 on the right, because that is the 
domain of the function I chose to graph. Suppose instead that we wanted to find the area under the curve 
from x=17 to x=29. We can do that. Clearly, it would be the area from 0 to 29, minus the area from 0 to 
17. 

  

= -
17 29 17 1729 29  

Thus, the area between x=17 and x=29 is 29
2

-17
2

=552. The full and proper notation that would be used is 
this: 

   2xdx
17

29

x
2

17

29

29
2

17
2

552  

This is called a definite integral, because we have specified a particular domain of f(x) under which to 
find the area. If all you want is the function describing the area under the curve, without specifying a 

particular range, that is the indefinite integral. For f(x)=2x, the indefinite integral is just x2. 
 

Exercise  Do exercise 3. 
 

The Constant of Integration 
 The two functions at right have the same derivative. This should 
make sense — the slopes of the two functions are identical everywhere, the 
only difference being that one is higher than the other. In more explicit 
terms, g(x) = f(x)+C, where C is some constant number. Apparently, adding 
a constant to a function does nothing to its derivative. This leads us to two 
statements: 
  (a) The derivative of a constant is zero.  
  (b) The derivative of the sum of two functions is the sum of their derivatives.  
 There is never any ambiguity when taking the derivative of a function. Not so when integrating. 

Let's look at our example f(x)=2x. The integral of this could be x2, or x2+1, or x2+17, or... you get the 
idea. Each of those has the same derivative, namely 2x. So the best we can do, without additional 

information, is to say that the indefinite integral of f(x) is x2+C, where C is the constant of integration. 

 Next is a table of the most basic derivatives and integrals. They are often needed in physics.

f(x) g(x)

x x  
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Table of Basic Integrals and Derivatives 
 In the following table, 'a' and 'C' represent constants. 
 
 

 
differentiation

integration             
 

 
 

a x C  

 

  

 

 
 

a  

      
 
 

x
2

C  

 

  

 

 
 

2 x  

      
 
 

x
n

C  

 

  

 

 
 

n x
n 1

 

      
 
 

sin x C  

 

  

 

 
 

cosx 

      
 
 

cos x C  

 

  

 

 
 

sin x  

      
 
 

e
x

C 

 

  

 

 
 

e
x

 
 

      
 
 

lnx C  

 

  

 

 
1

x
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Tools for Differentiation and Integration 
 Usually you aren't in need of differentiating or integrating exactly one of the functions given in 

the table. Instead of f(x)=sin x, it might be f(x)=3sin(5x+7)+x2, or some such. Here are some rules to 
help you deal with these situations. I won't bother proving them; you’ll do that in math class. 
 
THE SUM RULE 
The derivative of the sum of two functions is the sum of their derivatives. Ditto for integrals. 

  
d[f(x) g(x)]

dx

df

dx

dg

dx
 dx)x(gdx)x(fdx)]x(g)x(f[  

 Example  

 Let f(x) x
2
 and g(x) sinx . Then 

d[x2 sin x]

dx
2x cosx  

 
THE PRODUCT RULE 
The derivative of the product of two functions is the sum of each times the derivative of the other. 

  
d[f(x)g(x)]

dx
f(x)

dg

dx
g(x)

df

dx
 

 Example 

 Let f(x) x
2
 and g(x) sinx . Then 

d[x2 sinx]

dx
x

2
cos x 2xsin x  

 
THE CHAIN RULE 
Say f is a function of g, and g is a function of x. Then 

  
df(g(x))

dx

df

dg

dg

dx
 

 Example 

 Let f(x) sin
2
x. Another way to write this is f(g) g

2
,  g(x) sinx. 

 Then 
df

dx

df

dg

dg

dx
2g cosx 2sinx cosx . 

 
INTEGRATION BY SUBSTITUTION 
Say f is a function of g, and g is a function of x, and you are trying to integrate f with respect to x. That 

is, you have f (g(x))dx. To accomplish this, first you need to get the integral into the form f (g)dg . 

This can often be done with a substitution, which is best illustrated by example. 
 Example 

 You are trying to integrate sin(3x)dx . In this case, f(g)=sin g and g(x)=3x.  

 Now, 
dg

dx
3, so dx

dg

3
.You can now replace dx in the integral and finish: 

  1
3 singdg 1

3 cosg 1
3 cos3x. 

 

Exercises  Now do exercises 4, 5 and 6. 
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Units & Physics 
 It's time now to touch base with the real world. This is a physics class, after all! As physicists, we 
use variables to represent measurable quantities, and these have units. For instance, if both f(x) and x 
represent lengths along the vertical and horizontal axes, then they will have units of centimeters or meters 
or, if we're feeling especially barbaric, inches or feet. Let's say we're using cm. The infinitesimal interval 

dx will be in cm as well. When we take an integral, we multiply x by dx, yielding units of cm2, which is 
a proper unit for an area. 
 There is no reason the two axes of a graph have to have 
the same units. In physics we are often interested in some 
property (location, temperature, etc.) as a function of time. Let's 
look at the position of a car as a function of time, x(t). Now x is 

the dependent variable and time, t, is the independent 

variable. (Up until now we've been using f as the dependent and 
x as the independent variables.) A graph of a hypothetical car's 
position is given to the right. Be careful — the car's position x is 
on the vertical axis. Notice also that the point where the 
horizontal and vertical axes cross is not (0,0): there's no law that says it has to be. What does the slope, or 

derivative, of this curve represent? The slope now is x
t , where x xfinal xinit ial

 is the distance the car 

traveled and t t final t init ial
 is the amount of time it took to do so. The ratio of the two is the rate of 

change of the position. Distance per time is a velocity. ('Per' always means 'divided by'.) For this 

example, x 41m  and the time interval is t 2.2sec , yielding a velocity of (with two significant 
digits) 19 m/sec. The car was moving with a uniform (constant) velocity, because the slope is a constant. 
 If the velocity is not constant, we have to take a 
derivative to find the velocity as a function of time, v(t). The 

derivative of an x-versus-t graph is written dx
dt , "the derivative 

of x with respect to t." So the velocity is the derivative of the 
position. If the position graph x(t) looks like graph A (right), 
then the velocity as a function of time v(t) looks like graph B. And what does the derivative of v with 

respect to time, dv
dt , represent. It is the rate of change of the velocity, also known as acceleration. 

Because v(t) as shown in graph B was a straight line, the acceleration must be a constant.   
 Let's pause here and consider the units. If x is measured in meters and time in seconds, then 

v(t) dx
dt  has units m

sec , and acceleration has units 
m
sec

sec or 
m

se c 2 .  

 If v(t) is the derivative of x(t), then x(t) must be the integral of v(t). Similarly with velocity and 
acceleration: because a(t) is the derivative of v(t), then v(t) is the integral of a(t). More simply stated:  
  • Acceleration is the slope of the graph v(t) 
  • Velocity is the slope of the graph x(t), and is also the area under the curve a(t). 
  • Position is the area under the graph v(t)  

These relationships can be summarized in a diagram...

        di ffe re nt ia tion

x(t) v(t) a(t)

       inte grati on

 

  
 Let's see what v(t) and x(t) are for the case when a(t) is a constant: 

   a(t) a constant  

Memorize that; you will need it. To find v(t), we need to integrate again... 

   v(t) a dt at C  

We don't know offhand what the constant of integration is, but let's think about it. At t=0, the term a t is 
also zero. Therefore, C must represent whatever velocity the object had at the start. Instead of C, let's call 
that initial velocity vo: 

x 

(m)

t (sec )

3 5

7 6

1 .7 3 .9

final

in itial

 

x

t t

v

t

a

A B C

 



Calculus in Ten J.R.Regester 8 
       ver: 27Aug2008  

   v(t) vo at  

 To find x(t), we need to integrate one more time... 

   x(t) v(t)dt (at v0)dt 1
2 at

2
v0t C 

 Again, consider the situation at t=0. At that time, x(0)=C: in order words, this constant of 

integration is the initial position of the object. Call it xo. We are left with the equation of motion for an 

object moving under uniform acceleration, in one dimension. Memorize it, too. 

   x xo vot
1
2 at

2
 

 

Exercise  Go do exercise 7 now. 
 

One More Example from Physics 
 In physics, work is defined as a force times a distance. If the force is constant, you can just 

multiply the force by the displacement: W F d.  If the force is changing, however, that won't do. Say 
you have a spring which you are pulling to the right. As you pull further to the right, it gets harder and 
harder to stretch further, i.e. F is increasing. How to find the total work done in stretching the spring from 
x=xo to x=xf? Well, pull the spring a tiny distance Δx and multiply by the force F at the start of that Δx. 
This gives you a small portion ΔW of the total work W. The reason for specifying a small Δx is that F 
won't change much over a small displacement. Now, pull the spring a little further, multiply F (a little 
bigger now) by Δx, and keep going. Adding together all those ΔW's gives the total work W. I hope this 
process reminds you of integration, cause that's what it is. Take the limit as Δx goes to dx, and we have 

   W F(x)dx
xo

xf

  units:[W] [F] [x] N m J  

That is, work is the area under the graph F(x). Hooke's Law says that, for a spring, F=kx, where k is a 

number (the spring constant) describing how stiff that particular spring is. Substituting that in for F(x) 
in the integral yields... 

   W kxdx
xo

xf

1
2 kx

2

xo

xf 1
2 k(xf

2
xo

2
) 

Finding Maxes and Mins 
 The derivative is a handy tool to find where a function has a peak 

value (a maximum) or a low value (a minimum). Wherever there is a max 
or a min to a function, the slope at that point must necessarily be zero. So to 
find at what values of x the maxes and mins are located, all you need do is 
take the derivative of the function, set it equal to zero, and solve for x. 
    
Example 
Say you want to find when a projectile is at the highest point of its trajectory. The vertical position is 

given by x xo vot
1
2 at

2
. The derivative is the velocity v vo at . It makes sense that the height, 

x, is maximum when the velocity is zero, because that's when the ball is momentarily between going up 
and coming down. Setting the derivative equal to zero yields: 

   

0 vo at

t
vo

a

 

For free-fall motion, a=g=-9.8 m/sec2. 

x x

f(x)

max

min
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Exercises 
 

1. Using the same method I used on page 2, find the derivative of f(x)=x3. 
2. Sketch the derivatives of the following three functions on the axes provided. 

    
 

    
3. Find the area under the curve f(x)=2x from x=0.70 to 2.1. 

4. Find the derivatives of  (a) 1/x  (b) cos(x2) (c) G/x2 (G constant) 

    (d) x4+3x3 (e) e-7x sin x (f) cos2x 
5. Find the indefinite integrals of (a), (c), and (d), above. 
6. Find the definite integrals of (a), (c) and (d), from x=1.00 to x=11.0.  
7. An arrow is shot upwards with an initial velocity of 32 m/sec. Ignore air resistance. 
 (a) When will the arrow be at a height of 25 meters? 
 (b) How fast is the arrow moving when at 25 meters? 
 (c) When is the arrow at its highest point? 

8. Find where the function 3x2-x3 has any maxima or minima. 
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Solutions to Exercises 
 

1. 
df

dx
3x

2
 

2.  

    
3. Area is 3.9. 

4.  (a) x
2
  (b) 2xsin(x

2
)   (c) 2Gx

3
 

 (d)4x
3

9x
2
 (e)e

7x
cosx 7e

7x
sinx (f) 2cos x sin x 

5. (a) lnx C  (c)
G

x
C   (d)

1
5 x

5 3
4 x

4
C  

6.  (a) 2.40 (c) 0.909G (d) 4.32x104 
7. (a) At t=0.91 sec and t=5.6 sec 
 (b) 23 m/sec 
 (c) At t=3.3 sec 
8. At x=0 and x=2. 


