Using Gnuplot to sketch graphs

Introduction

Gnuplot is a powerful, open-source graphing tool that can be used to plot functions and data as well as fit curves.

Useful web sites

Duke Gnuplot manual and tutorial A nice introduction to the most common uses of Gnuplot in engineering. <http://www.duke.edu/~hpgavin/gnuplot.htm>

Gnuplot home page <http://www.gnuplot.info/>

Curve Fitting A nice example of curve fitting with Gnuplot.Click the *Contents* link to see other pages related to Gnuplot. <http://www.ictp.trieste.it/~manuals/userguide/manual_178.html#SEC177>

Example Code

The following snippets of code will help you get started.

Plot a function

f(x)=exp(x) plot [-1:1] f(x)

Plot a piece-wise function

You can use ? for writing if-else statements to define a function. The set command is used to set things like labels, title, etc. You can use the Symbol font to display greek letters in text.

```
y1(x)=(x<-100) ? 0 : 0.15*x
y2(x)=(x<100) ? y1(x) : 0
set title "charge density"
set xlabel "x (nm)"
set ylabel "{/Symbol r} (mC/cm^3)"
set nokey
plot [-300:300] y2(x)
```

Plot data

If your data is stored in tab-delimted format in a file called data.txt , then you can plot it using

plot data.txt

If you want to plot a function and your data on the same graph, use

y(x)=exp(x)
plot y(x), data.txt

Running a Gnuplot script

It's best, I think, to write your Gnuplot code and save it as a .plt file. Then run the code from the command line using >gnuplot myfile.plt. The one drawback is that the graph window will appear and then disappear. To keep the graph window open, use pause -1 as shown in this example.

```
y(x)=x**2
plot [-1:1] y(x)
pause -1
```

Printing the graph to a file

To print the graph to a file, perhaps so you can import the file into a document or something, you have to **set output** to the name of the file and **set term** to postscript eps enhanced.

```
y(x)=x**22
set term postscript eps enhanced
set output "plot.eps"
plot [-1:1] y(x)
```

Curve Fitting

GnuPlot can find the parameters for a function that best fits a set of data. You have to give GnuPlot a "guess" for the function that fits the data. It then determines the values of the coefficients for that function. It's easiest, I think, to put the data and the initial guess for parameters into separate files from the main gnuplot file.

For example, let's fit data to a 7th order polynomial. I used Excel to generate the data, and saved the data in tab-delimited format in the file data.txt . Here's the data.

0 1 0.1 1.101010101 0.2 1.204081633 0.3 1.309278351 0.4 1.416666667 0.5 1.526315789 0.6 1.638297871 0.7 1.752688166 0.8 1.869565199 0.9 1.989010942 1 2.111111 1.1 2.235954815 1.2 2.363635875 1.3 2.494251936 1.4 2.627905261 1.5 2.764702867 1.6 2.904756792 1.7 3.048184367 1.8 3.195108512 1.9 3.345658045 2 3.499968

I then created a file guess.txt that contained name=value pairs with initial values of the parameters of the function. For a 7th order polynomial, there are 8 coefficients. Here are the initial values.

a=1 b=1 c=1 d=1 e=1 f=1 g=1 h=1

The gnuplot file defines the function in terms of the parameters given in guess.txt, fits the data (i.e. finds the best-fit values of the coefficients in the function), and plots it. Here's the gnuplot code contained in a file I called polynomial.gpt.

y(x)=a+b*x+c*x**2+d*x**3+e*x**4+f*x**5+g*x**6+h*x**7
fit y(x) "data.txt" via "guess.txt"
set xlabel "x"

```
set ylabel "y"
set nokey
plot y(x), "data.txt"
pause -1
```

Run the program using the command

gnuplot polynomial.gpt

The last line uses **pause** so that the graph window will stay open. Of course, you can always output the graph to a file instead of the screen. If you run this code, the output will be

Final set of pa	arameters	Asymptotic Standard Error				
a	= 1	+/- 2.438e-10	(2.438e-08%)			
b	= 1	+/- 5.251e-09	(5.251e-07%)			
С	= 0.1	+/- 3.455e-08	(3.455e-05%)			
d	= 0.01	+/- 9.459e-08	(0.0009459%)			
е	= 0.000999968	+/- 1.288e-07	(0.01289%)			
f	= 0.000100028	+/- 9.222e-08	(0.09219%)			
g	= 9.9878e-06	+/- 3.318e-08	(0.3322%)			
h	= 1.002e-06	+/- 4.728e-09	(0.4718%)			

correlation matrix of the fit parameters:

	a	b	с	d	е	f	g	h	
a		1.000							
b		-0.641	1.000						
с		0.451	-0.953	1.000					
d		-0.359	0.889	-0.984	1.000				
е		0.304	-0.831	0.953	-0.992	1.000			
f		-0.267	0.782	-0.920	0.974	-0.995	1.000		
g		0.241	-0.741	0.888	-0.952	0.983	-0.997	1.000	
h		-0.221	0.706	-0.858	0.930	-0.968	0.988	-0.997	1.000

The graph produced by GnuPlot is shown in Figure 1.

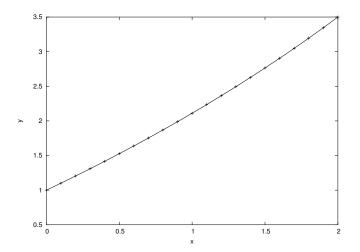


Figure 1: