




	B	HPU	<u>III</u>
Poll		Poll	
A hydrogen atom is in its first excited state. What the minimum energy that must be input into the system in order to break apart the electron and proton, meaning that the electron will just barely escape the proton.		A hydrogen atom is in its second excited state. If it gains 0.66 eV of energy	
1. 3.4 eV 23.4 eV 3. 13.6 eV 413.6 eV 5. zero		 It will no longer be bound. It will still be bound, but at a higher energy. It will still be bound, but at a lower energy. 	

	Bin		理定面
Change in Energy		Poll	
Because only certain energy orbits are allowed, the hydrogen atom can only gain or lose energy in an amount that corresponds to a change in the allow orbits.	ו ו	 Hydrogen is in its ground state. Which of th possible? 1. The atom can gain 1 eV of energy. 2. The atom can lose 1 eV of energy. 3. The atom can gain 3.4 eV of energy. 4. The atom can lose 3.4 eV of energy. 5. The atom can gain 10.2 eV of energy. 6. None of the above. 	e following is

Т Н Р.U	Bro	HPU	<u>Min</u>
Poll			Poll
In what region of the spectrum is a photon abs by hydrogen in its ground state?	sorbed	for an atom. If the atom is	e quantized energy levels (K+U) excited to the second excited nat are the possible energies of
1. Gamma			1 eV
2. X-ray		1. 2, 5, and 9 eV	-2 eV
3. UV		2. 3, 4, and 7 eV	5 eV
4. Visible		3. 3 or 7 eV	
5. IR		4. 5 or 9 eV	
6. Radio		5. 2 eV	

H P U	Den	не и
Poll		Poll
 Imagine an atom which only has two electronic energy levels. The ground state energy is -3.0 eV and the excited state has an energ -1.2eV. I irradiate a sample containing many atoms with visible lig which contains photons of all energies from 1.8 eV up to 3.1 eV. What will be the energy of the missing (i.e. absorbed) photons? 1. No photons will be missing. 2. 1.2 eV 3.0 and 1.2 eV 4. 3.0 eV 5. 1.8 eV 	y of	Light consisting of photons with a range of energies from 1 to 7.5 eV passes through this gas. The gas is kept very cold so that all atoms are in the ground state. What photon energies will be absorbed from the light beam ("dark lines")? 1) 2 eV, 5 eV, 9 eV 2) 3 eV, 4 eV 3) 0.5 eV, 3 eV, 4 eV 4) 4 eV, 7 eV 5) 3 eV, 4 eV, 7 eV