Physics 211, Fall 2008

Quiz 6, Form: A

$$I_0 = 1 \times 10^{-12} \text{ J/second/m}^2$$

$$v_{air} = 340 \text{m/s}$$

Section 1. Multiple Choice

1. For a standing wave on a string that looks like the one below,

what harmonic is this?

- (a) n=1
- (b) n=2
- (c) n=3
- (d) n=4
- (e) n=5
- 2. What is the wavelength of the standing wave in the previous question?
 - (a) 3.0 m
 - (b) 0.5 m
 - (c) 1.5 m
 - (d) 0.75 m
 - (e) 1 m
- 3. A pipe has a closed end an an open end. For air in the pipe (v = 340 m/s), what is the frequency of the fundamental if the length of the pipe is 0.1 m?
 - (a) 680 Hz

= 41=1 1=41=0.4m

- (b) 1700 Hz
- (c) 425 Hz
- (d) 850 Hz (e) 1133 Hz
- f = \frac{\foats = \frac{340}{0.4}}

Name: Yey
Date: _____

4. Suppose that in lab, you measure x(t) for a simple harmonic oscillator. The best-fit function is $x = 0.03 \cos(2t+1)$ where x is in meters and t is in seconds. What is the angular frequency?

- (a) 0.03 rad/s
- (b) 2 rad/s
- (c) $2\pi \text{ rad/s}$
- (d) 1 rad/s
- (e) zero

5. Suppose that when listening to music normally in the car, the sound level is 80 dB. However, //o-80 your friend with the super-cool, shake-the-car speakers turns it up to 110 dB. By what factor did he increase the intensity of the sound?

- (a) 10 each additional IdB
- (b) 100
- (c) 110
- (d) 1,000
- (e) 10,000

15 a factor of 10 In m fewily, 50 103 = 1000

- 6. Sound is a
 - (a) long

longitudinal wave

- (b) transverse wave
- (c) neither of the above because it can be both a longitudinal and a transverse wave

7. A pendulum swings back and forth in simple harmonic motion and shown below. It takes 0.25 s to swing from its furthest point on the right to the equilibrium position. What is its frequency?

- 4 Hz (a)
- At for y cycle is
- (b) 2 Hz
- 0.255
- 1 Hz

(d)

- 50 T = 4(0,45)
- (e) $0.25~\mathrm{Hz}$

 $0.5~\mathrm{Hz}$

- 215 f= += 1 HZ
- 8. Spring A has twice the stiffness of Spring B. If the same mass is attached to each spring and oscillates, the angular frequency of Spring A is
- $(1/\sqrt{2})\omega_B$ $\omega = \sqrt{\frac{k}{M}}$
- $(1/2)\omega_R$
- 历 = 日辰
- (d)
- (e) equal to ω_B .
- 10 W= 12 WB
- 9. For a sound source moving toward a detector, the detected frequency is
 - lower than the source frequency.
 - higher than the source frequency.
 - (c) the same as the source frequency.
- 10. For a sound source moving toward a detector, the detected wavelength is
 - ((a)shorter than the wavelength of the source.
 - (b) longer than the wavelength of the source.
 - (c) the same as the wavelength of the source.

11. A source is emitting a constant frequency sound wave in all directions as it moves, as shown below.

What direction is the velocity of the source?

- (a) There is not enough information from the picture to answer the question.
- (b) Neither because the source is stationarv.
- (c) to the right
- to the left
- 12. On the end of a pipe that is closed, the displacement of the air is
 - (a) Neither a node nor an antinode, because it could be in between a node and antinode.
 - (b) It could be either a node or antinode depending on the wavelength of the standing wave
 - an antinode
 - a node
- 13. A 0.5-kg object hangs from a spring of stiffness 10 N/m. You pull it down 0.075 cm from equilibrium and release it from rest. It oscillates in simple harmonic motion. What is its angular frequency?
 - (a) 14.1 rad/s
- W= [= 10]
- 11.5 (b)
- (c) 1.43 rad/s
- 2.24 rad/s
- 4.47 rad/s

- 14. An oscillator has an angular frequency of 4 rad/s. What is its frequency in Hz?
 - $1.57~\mathrm{Hz}$ (a)
 - $4.0~\mathrm{Hz}$ (b)

 $0.25~\mathrm{Hz}$ (c)

- (d) $1.27~\mathrm{Hz}$
- (e) $0.637~\mathrm{Hz}$
- 15. Suppose that in a particular experiment, one sets up a standing wave on a string that looks like the picture shown below.

How many nodes are there?

- (a)
- (b) 6
- (c) 12
- 3 (d)

(e) 14

٥٢

1=21

- 16. For the previous question, suppose that you want a standing wave that is a higher harmonic. What should you do to the tension in the string (assuming that the frequency and length stay the same)?
 - increase the tension
 - decrease the tension
 - (c) none of the above because changing the tension will not change the harmonic of the standing wave

17. The graph of x(t) for a simple harmonic oscillator is shown below.

What is the amplitude of the oscillation?

- 1.25 m
- (b) 0.05 m
- (c) 2.5 m
- (d) $0.80 \ m$
- (e)` 0.025 m
- 18. For the oscillator in the previous question, what is its period?
 - (a) 1.5 s
 - (b) 0.025 s
 - (0)2.0 s
 - (d) 3.5 s
 - (e) 1.0 s
- 19. Which will have a fundamental frequency that is lower, a pipe that is (a) open at one end and / www. closed at the other or (b) a pipe that is open at both ends? (Assume that all other characteris- 12 /c-u-f tics are identical.)

- The pipe that is closed at one end and open at the other.
- (b) The pipe that is open at both ends.
- (c) Neither, because they will have the same fundamental frequency.
- 20. String Y is thicker than String Z, but they are both made of the same material. Which guitar string will have a higher fundamental frequency?
 - String Y

f= 点压

String Z

lower pr is light of

Neither because they will both have the same fundamental frequency.

Think of guitar strings

21. A simple harmonic oscillator consists of a 0.5 kg mass on a spring of stiffness 8 N/m. If you pull it back 0.05 m from equilibrium and release it from rest, what will be its maximum speed?

(d)

0.63 m/s

- XkA2- Kminax 0.80 m/s(a) $0.20 \; \mathrm{m/s}$ V= Jk A 0.89 m/s(c)
- (e) $0.40 \; \mathrm{m/s}$ = 4(0.05) = 0.23
- 22. For the oscillator in the previous question, if you double its amplitude by pulling it back 0.1 m and release it from rest, the total energy of the oscillator will increase by a factor of
 - E=thA (a) 2 (b)
 - (ZA)2=4A2 4 8 (d)
 - (e) none of the above, because the total energy will be the same

- 23. If you double the amplitude of oscillation of a harmonic oscillator, by what factor will the frequency change?
 - (a) 2
 - (b) 1/2
 - $\sqrt{2}$ (c)
 - $1/\sqrt{2}$ (d)
 - (e) None of the above; the frequency is independent of the amplitude.
- 24. A person is tuning his guitar. The low E string is tuned to 156 Hz. When playing the same note on another string, he hears a beat frequency of 4 Hz. What is the frequency of the other frent= |f,-f2| =4HE
 - $152~\mathrm{Hz}$ (a)
 - (b) $160~\mathrm{Hz}$
 - (c) It could be either 152 Hz or 160 Hz
 - (d) None of the above.
- 25. A simple harmonic oscillator has a period of 2.0 s. What is its frequency in Hz?
 - $2.0~\mathrm{Hz}$ (a)
 - (b) 2π Hz
- T= 2.0 5 f==== #t
 - $\pi/2~{\rm Hz}$ (c)
 - $0.5~\mathrm{Hz}$
 - $4.0~\mathrm{Hz}$ (e)

Section 2. Problem Solving

- 26. A pedestrian standing at the curb hears the horn of a car approaching her at 26 m/s. For her, the horn has a frequency of 600 Hz.
 - (a) At what frequency does the driver hear the horn?

$$f_d = 600 \text{ Hz}$$

$$f_d = \left(\frac{\sqrt{+v_d}}{\sqrt{v_s}}\right) f_s$$

$$f_s = 7$$

$$V = 340 \text{ f}$$

$$600 = \left(\frac{340}{340 - 26}\right) f_s$$

$$V_s = 26 \text{ f}$$

$$V_l = 0$$

$$f_s = \frac{600 (340 - 26)}{340}$$

$$f_s = \frac{554 \text{ Hz}}{340}$$

$$f_d > f_s = 254 \text{ expected}.$$

(b) After the car passes her, the horn is still blaring. At what frequency does she hear the horn this time?

$$f_{d} = \left(\frac{340}{\sqrt{1+4}}\right) f_{5}$$

$$= \left(\frac{340}{\sqrt{1+4}}\right) \left(\frac{340}{\sqrt{1+4}}\right) = \left(\frac{340}{\sqrt{1+4$$

410

27. Sketch the displacement as a function of x for the first four harmonics of a longitudinal standing wave in a pipe of length L that is open on both ends.

displacement is an antinode at both ends

n=1

n=2

n=3

n=4

(little off...)

Not a great state

- 28. A spring is attached between the end of an air track and a 1.2 kg cart. The cart is pulled back 0.4 m from its equilibrium position and released from rest. It oscillates with a period of 3.0 s. x is the position of the cart at any time t, with x = 0 defined as the equilibrium position of the cart.
 - (a) What is the angular frequency of the oscillator?

$$T = 35$$
 $\omega = 2\pi f$ $f = \frac{1}{3}H = \frac{1}{3}H = \frac{1}{3}M = \frac{1}{3}$

(b) What is the stiffness of the spring?

(c) What is the total energy of the oscillator?

$$E = \frac{1}{2}kA^2 = \frac{1}{2}(5.24)(0.4)^2 = 0.419 \text{ J}$$

(e) When the cart is at x=0.2 m, what percentage of the total energy is elastic potential energy what percentage is kinetic energy?