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Abstract

A cantilever is a beam that is fixed at one end and free to oscillate on the other end, and

its motion is described by a fourth-order partial differential equation (i.e. a fourth-order wave

equation). In this experiment, a cantilever was set up using a long, flat metal beam, and its

motion was captured at 600 fps using high-speed video. The video was analyzed to determine how

the frequency of oscillation of the free end of the beam depends on the length of the beam. Results

showed that for the case where the beam was pulled down on one end and released from rest, the

motion of the free end of the beam was sinusoidal. It was found that the frequency of oscillation

was proportional to the inverse of the square of the length of the beam, as predicted by the solution

to the wave equation for the beam. Using the curve fit, the rigidity of the beam was found to be

K = 0.0151 N ·m2.
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I. INTRODUCTION

A cantilever is a beam with one fixed end and one free end as shown in Figure 1. The

vertical displacement u(x, t) of a point at location x on the beam oscillates and is described

mathematically by the differential equation in Eq. (1),

∂2u

∂t2
= α2∂

4u

∂x4
(1)

where α2 = K/ρ, K is the rigidity of the beam in N ·m2, and ρ is the linear density of

the beam in kg/m. (Solutions of this differential equation for various boundary conditions

are discussed by Wylie1 and Farlow2.) This differential equation is called a wave equation

for the beam, and it is easier to express the partial derivatives in the wave equation using

the notation in Eq. (2).

utt = α2uxxxx (2)

By separating the variables x and t, the solution u(x, t) is written as a product of a

function of x and a function of t, as shown in Eq. (3).

u(x, t) = X(x)T (t) (3)

The general solutions for each function are:

T (t) = A sin(ωnt) +B cos(ωnt) (4)

X(x) = C cos(βnx) +D sin(βnx) + E cosh(βnx) + F sinh(βnx) (5)

where ωn are the natural frequencies of the beam, and βn, A, B, C, D, E, and F are

constants that must be determined from the boundary conditions (at x = 0 and x = L) and

the initial conditions (at t = 0).

For a beam fixed on one end (at the left) and free to oscillate on the other end (at the

right), the boundary conditions are:
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at left end u(0, t) = 0 left end is fixed at u = 0 (6)

at left end ux(0, t) = 0 beam is horizontal at left end (7)

at right end uxx(L, t) = 0 bending moment is zero (8)

at right end uxxx(0, t) = 0 shear stress is zero (9)

The initial conditions refer to the position and velocity of each point x on the beam

at t = 0. These will be functions that depend on how the beam is initially released. For

example, the simplest case is if the free end of the beam is pulled downward and released

from rest. In any case,

initial vertical displacement u(x, 0) = f(x) (10)

initial vertical velocity ut(x, 0) = g(x) (11)

(12)

where f(x) is determined by the shape of the beam at t = 0, and g(x) is determined by

the velocity profile of the beam at t = 0. The beam may be released from rest; however, it

is also possible to hit one part of the beam, like the hammer in a piano striking a string, so

that g(x) 6= 0.

By substituting the solution u(x, t) = X(x)T (t) into the wave equation in Eq. (2), the

following quantities can be determined.

1. Natural frequencies:: The natural frequencies are:

ωn =

√
K

ρL4
(βnL)2 (13)

where the constants (βnL) are the intersections of the curves in the graph in Figure 2.

The first three values are βnL = 1.875 rad, 4.694 rad, and 7.855 rad, and subsequent

values are for cos(βnL) = 0. Note that ωn ∝ 1
L2 . Thus, a shorter cantilever will

oscillate with a higher frequency. If the cantilever is twice as short, its frequency will

be 4 times greater.
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2. Coefficients and frequencies for various modes:: The formal solution u(x, t) is

u(x, t) =
∞∑
n=1

X(x)(Acosωnt+Bsinωnt) (14)

where the constants A and B are determined from the initial conditions.

For the initial vertical displacement,

u(x, 0) = f(x) =
∞∑
n=1

AnX(x) (15)

For the initial velocity,

∂u

∂t
(x, 0) = g(x) =

∞∑
n=1

(ωnBn)X(x) (16)

From the shape of the cantilever at t = 0, f(x) can be determined by a curve fit.

By measuring the initial velocity of various points on the cantilever, g(x) can be

determined by a curve fit. With these known, a Fourier transform can be used to

determine the coefficients An and Bn for the natural frequencies ωn. Thus, the Fourier

transform tells us which eigenfunctions make up the solution for the given initial

conditions.

In this experiment, the free end of the cantilever was released from rest, and it oscillated

sinusoidally. High-speed video was used to measure the vertical position of the free end as a

function of time. The angular frequency of oscillation was measured by a fitting a sinusoidal

function to the graph of vertical position vs. time. The angular frequency was measured as

a function of amplitude and as function of the length of the bar.

II. APPARATUS

The apparatus is shown in Figure 3 with the bar flexed and ready to be released. The

cantilever was a long, rectangular aluminum bar that was 0.002 m tall, 0.914 meters long and

0.048m wide. Yellow stickers were placed at 10 cm increments on the bar. The right-side of

the bar was clamped to a table so that it was fixed. A meterstick with yellow stickers placed

10 cm apart was placed close to the plane of the bar and was used for distance calibration

in the video.
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III. EXPERIMENT: FREQUENCY AS A FUNCTION OF AMPLITUDE

It is well known that the frequency of a simple harmonic oscillator is independent of the

amplitude of oscillation. However, it was not clear if this was the case for the oscillating

cantilever beam (free end). To determine whether it was important to control the amplitude

of oscillation in the experiment, it was first determined whether amplitude affected the

frequency of oscillation.

The bar was clamped at a location so that its length was 50 cm. The free end of the

cantilever was pushed downward and released from rest as shown in Figure 3. The vertical

position y of the free end of the cantilever was measured as a function of time t for numerous

oscillations. The result is shown in Figure 4 along with the a sinusoidal curve fit of the form

y = Asin(Bt+C)+D. Comparing this with the sinusoidal function y = Asin(ωt+φ) shows

that the amplitude is the coefficient A and the angular frequency is the coefficient B from

the curve fit.

Four different trials were conducted, each with a different amplitude, and the results

are shown in Table I. The average frequency is 3.034 rad/s with a standard deviation

of 0.009 rad/s. That’s a percent deviation of only 0.003% from the mean. Considering

that the amplitude was changed by a factor of two, the variation in the angular frequency

is statistically insignificant. It is safe to conclude that the amplitude does not affect the

angular frequency; therefore, the amplitude does not have to be controlled when measuring

the angular frequency of the bar.

IV. EXPERIMENT: FREQUENCY AS A FUNCTION OF THE LENGTH OF THE

BAR

According to Eq. (13), the angular frequency of the bar should be proportional to 1/L2

of the bar, since (βnL) are constants for different modes of oscillation. To test this, the

angular frequency of the free end of the bar was measured for various lengths of the bar:

40 cm, 50 cm, 60 cm, and 70 cm. The amplitude was kept approximately the same, though

this was not necessary since amplitude does not affect angular frequency.

For each length, the experiment was repeated for a total of three trials, and the average

angular frequency and standard deviation of the angular frequency were measured. The
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standard deviation of the angular frequency was used to determine the uncertainty in the

measurement of the angular frequency. As shown in Figure 4, the angular frequency for each

trial was measured using a sinusoidal curve fit of y(t) for the free end of the cantilever.

The results are shown in Table II. Note that the standard deviation is remarkably small,

showing that high-speed video analysis in this case is a precise and excellent technique for

measuring the frequency of oscillation. The relative error in the worst case is only 0.2%

A graph of ωave as a function of L is shown in Figure 5. The error bars are too small to

be seen on the graph. The function ω = A/L2 was fit to the data, and the best-fit curve

was found to be ω = (0.755 m2/s)/L2.

It was not established that the free end of the beam oscillates in the fundamental mode

(n = 1). However, assuming that n = 1, then β1L = 1.875 and the curve fit parameter

is A =
√

K
ρ

(1.875)2 = 0.755 m2/s. Solving for the rigidity constant for this particular

aluminum bar (linear density ρ = 0.327 kg/m) gives K = 0.0151 N ·m2.

V. CONCLUSION

This experiment investigated the motion of the free end of an oscillating cantilever beam

that was displaced on the free end and released from rest. High-speed video analysis was

used to measure the amplitude and angular frequency of the free end of the beam. It was

found that the angular frequency is independent of the amplitude, which is similar to that

of a simple harmonic oscillator. In addition, the angular frequency was found to depend

on 1/L2 where L is the length of the beam; thus, shorter beams oscillate with a higher

frequency, exactly as predicted by the solution of the wave equation. The curve fit constant

for the graph of ω as a function of L was used to measure the rigidity of the beam, though

it was not proven that the measured oscillation was the fundamental mode with n = 1.

In future experiments, it should be possible to show that the measured oscillation is the

fundamental (n = 1). In addition, the initial conditions could be changed by hammering the

center of the beam, for example. In this case, it might be possible to get a superposition of

modes. The resulting graph of y(t) would be periodic, but not necessarily sinusoidal. Using
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Fourier Analysis and Equations (15)and (16), the various modes could be determined.

∗ atitus@highpoint.edu
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TABLES

Amplitude, A (cm) Angular Frequency, ω (rad/s)

5.826 3.025

7.117 3.030

9.397 3.036

10.980 3.046

TABLE I. Angular frequency for various amplitudes.

Length, L (m) ωave (rad/s) Standard Deviation, σ (rad/s)

0.40 4.705 .00849

0.50 3.024 .00153

0.60 2.107 .00173

0.70 1.555 .00173

TABLE II. Angular frequency for various lengths of the cantiliever.
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FIGURES
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FIG. 1. The cantilever and coordinate system.

FIG. 2. Graphs of cos(βnL) and −1
cosh(βnL)

.
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FIG. 3. A cantilever made of an aluminum bar fixed at one end.

FIG. 4. y(t) for the free end of the cantilever
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FIG. 5. ωave vs. L
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