To specify directions, use the coordinate system shown below where +x is to the right, +y is toward the top of the page, and +z is out of the page.

Section 1. Multiple Choice

1. The wires shown below copper wires of varying length and diameter. Which wire has the largest resistance?

Wire 5 (e)

Wire 4

(d)

2. At point A in the wire, what is the direction of the velocity of a mobile electron in the wire?

- FIFE to the left (<u>b</u>) to the right Fare To apposite E neither, because its velocity is zero
- 3. At point A, what is the direction of the electric field within the wire (due to surface charge on the wire) that pushes electrons through the wire?
 - prints toward low potential (a) to the left (b) to the right
 - (c) neither, because the electric field is zero

- 4. If 2 A of current flows past point A, how many mobile electrons flow past point A in one second?
 - (a) 2 electrons
 - (b) 0.5 electrons
 - (c) 3.2×10^{-19} electrons
 - (d) 6.25×10^{18} electrons
 - (e) 1.25×10^{19} electrons

Questions 5-6:

5. What is the equivalent resistance in the following circuit?

 $\left(\frac{2}{5}\right)\left(\frac{1e}{1.6\times10^{-19}e}\right) = 1.25\times10^{19} e^{\frac{1}{2}} e^{\frac{1}{2}}$

comes back together et (b)

- (a) 110Ω
- (b) 9.1Ω
- (c) 25Ω
- (d) 78Ω
- (e) 34 Ω
- 6. Through which resistor(s) is the current the greatest?
 - (a) the 30 Ω resistor and the 10 Ω resistor that is connected to point a
 - (b) the 60 Ω resistor
 - (c) 10 Ω resistor that is connected to point b
 - $\overline{(d)}$ Both (a) and (b)
 - (e) The current is the same through all of them.
- 7. Which of these laws is a result of Conservation of Energy?
 - (a) Kirchhoff's Current Law
 - (b) Kirchhoff's Voltage Law
 - (c) Both (a) and (b)
 - (d) Neither (a) nor (b)

8. Which current is the largest?

- (d) $I_2 = I_3$ which are greater than I_1
- (e) None of the above because they are all equal.
- 9. In the following two circuits, the batteries are identical, and the resistors are identical.

Which current is the smallest?

- (a) I_1
- (b) I_2
- (c) I_3
- (d) $I_2 = I_3$, which is less than I_1
 - (e) None of the above because they are all equal.

10. Which of these identical bulbs will be brightest?

- (e) D and E are equally bright and are the brightest
- (f) B and C are equally bright and are the brightest
- (g) All bulbs have the same brightness.

Questions 11–12: In the circuit below, the voltage across the battery is 5 V, $R_1=10~\Omega$, and $R_2=15~\Omega$.

11. What is the voltage across R_1 ?

12. What is the current through R_1 ?

Questions 13–15: Current flows through a wire as shown below. Near the wire, a positively charged ion travels in the direction shown.

- 13. What is the direction of the magnetic field due to the wire at the location of the ion?
 - (a) +x
 - (b) -x
 - (c) ±u
 - (d) -y
 - (e) +z
 - (f) -z

RHR.

B tagent to circle

- 14. What is the direction of the magnetic force on the ion due to the wire?
 - (a) +x
 - (b) -x
 - (c) +y
 - (\widehat{d}) -u
 - (e) +z
 - (f) -z
- 15. If the ion is 1 cm from the wire and 2 A of current flows in the wire, what is the magnitude of the magnetic field at the location of the ion?
 - (a) $4.0 \times 10^{-7} \text{ T}$
 - (b) $1.6 \times 10^{-8} \text{ T}$
 - (c) $4.0 \times 10^{-5} \text{ T}$
 - (d) $1.6 \times 10^{-6} \text{ T}$
 - (e) $1.3 \times 10^{-4} \text{ T}$
- $B = \frac{\mu_0 I}{2\pi r} = \frac{(4\pi \times 10^{-7})(2)}{7\pi (6.01 1)}$
 - 4 × 10 T
- 16. The magnetic field at the center of a 1.0-cm diameter loop is 2.5 mT. What is the current in the loop?
 - (a) 2.0×10^4 A
 - (b) 250 A
 - (c) 63 A
 - (d) 4000 A
 - (e) 20 A

- $B = \frac{M_0 I}{2R}$
 - $I = \frac{1}{560} = \frac{5(0.0027)(5.2 \times 10^{3} L)}{40002}$
 - = 20 A

Questions 17-18: A constant current flows through the coil shown in a top view below.

What is the di

- 17. What is the direction of the magnetic field at location A that is along the axis of the coil?
 - (a) +x
 - (b) -x
 - (c) +y
 - $(\widehat{\mathbf{d}})$ -y
 - (e) +z
 - (f) -z
- 18. If you model the electromagnet above as a magnetic dipole, which picture below shows the orientation of the poles of the coil?

Corl Anjus around coil.

19. A current-carrying coil and magnet are shown below. The coil is shown from a top view, and the magnet lies along the axis of the coil. Will the coil and magnet attract or repel?

- (b) repel
- (c) neither; they will not exert forces on each other

20. The figure below shows four particles moving to the right as they enter a region of uniform magnetic field. All particles move at the same speed and have the same charge.

MUST use left-hand, so particles one —

Are the particles negatively charged or positively charged?

- negatively charged
 - (b) positively charged
- (c) neither; they are neutral
- (d) It cannot be determined from the picture alone.