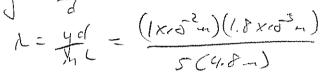
Section 1. Exercises

1. A pair of narrow slits, separated 1.8 mm, is illuminated by a monochromatic light source. Light waves arrive at the two slits in phase. A fringe pattern is observed on a screen 4.8 m from the slits. The distance from the central maximum to the fifth bright fringe is 1 cm. The wavelength of the monochromatic light is closest to:


550 nm(a)

600 nm(b)

650 nm(c)

700 nm

(e) 750 nm

1 = 7.5 x107m = >50 mm

2. For the previous question, if you instead use light of a shorter wavelength, then the distance from the central maximum to the fifth bright fringe will be

larger than 1 cm.

smaller than 1 cm.

so smaller X, smaller y.

1 cm, just as before.

3. Light having a frequency in vacuum of 6.0×10^{14} Hz enters a liquid of refractive index 2.0. In this liquid, its frequency is:

 $12 \times 10^{14} \text{ Hz}$

 $6.0 \times 10^{14} \text{ Hz}$

 $3.0 \times 10^{14} \text{ Hz}$

 $1.5 \times 10^{14} \text{ Hz}$ (d)

4. Light in a vacuum enters a liquid of refractive index 2.0. In this liquid, its speed is:

 $6.0 \times 10^8 \text{ m/}$ (a)

$$V = \frac{C}{N} = \frac{3 \times 10^{3}}{3} = 1.5 \times 10^{3}$$

 $3.0 \times 10^{8} \text{ m/s}$

 $1.5 \times 10^8 \text{ m/s}$

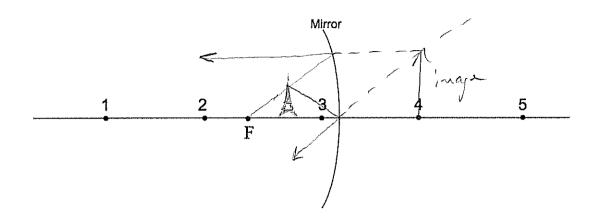
 $0.75 \times 10^8 \text{ m/s}$

5. A ray of light passes from air (n=1.00) into an unknown substance. If the angle between the light ray and the normal in air is 40° and the angle between the light ray and the normal in the unknown substance is 28°, what is the index of refraction of the unknown substance?

(a)

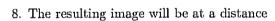
1, sna Or = 125x bz

(b)

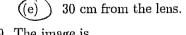

1.45

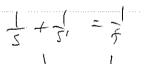
1.21

15m (40) = M, sin (28)

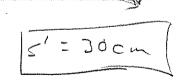

n = 1.37

Questions 6-7: An object is shown in front of a mirror as shown below.

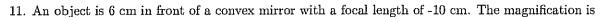



- 6. Sketch at least two "easy" rays to determine the point (1-5) that is closest to where the image is formed.
 - (a) 1
 - 2 (b)
 - 3
 - 4
 - 5 (e)
- 7. The image found in the previous question is
 - real and upright. (a)
 - (b) real and inverted.
 - virtual and upright.
 - virtual and inverted.

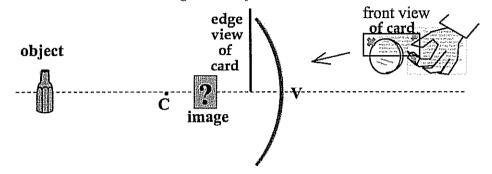
Questions 8-10: An object is placed 15 cm in front of a converging lens which has a focal point that is 10 cm from the lens.



- (a) 0.033 cm from the lens.
- (b) 5 cm from the lens.
- (c) 25 cm from the lens.
- (d) 6 cm from the lens.
- ((e)



- 9. The image is
 - on the same side of the lens as the object. (a)
 - on the opposite side of the lens from the object.


10. The image is

- virtual and enlarged. (a)
- (b) virtual and reduced.
- real and reduced. (c)
- real and enlarged.

(a) 0.6(b) -1.67(c) 2.5(d) -0.4(e) 0.625(e) 0.625(a) 0.625(b) -1.67(c) 0.625(d) -0.625(e) 0.625

12. A concave mirror forms an image of an object as shown.

Suppose the top half of the mirror is blocked by an opaque card. With the card in place, we see

- (a) no image
- (b) an image of the entire object
- (c) an image of just the top half of the object
- (d) an image of just the bottom half of the object

13. Which statement about images is correct?

- (a) A virtual image cannot be formed on a screen.
- (b) A virtual image cannot be viewed by the unaided eye.
- (c) A virtual image cannot be photographed.
- (d) A real image must be inverted.
- (e) Mirrors always produce real images because they reflect light.

14. A screen and a converging lens of focal length f are arranged to have an image of the moon fall on the screen. What is the distance between the lens and the screen?

(a) ∞ (b) 0(c) f/2(d) f(e) 2f(a) ∞ $5 = \infty$ $5 = \infty$ $5 = \infty$ 5 = 05 = 0

15. As an object distance changes, a human eye keeps the image focused on the retina by adjusting its

- (a) object distance.
- (b) image distance.
- (c) focal length.

Section 2. Critical Thinking

