Physics	1520,	Fall	2013
Oniz 3 Ve	reion I	Form:	

Name:	Kev	
Date	/	

(8960k) (5×10 1) (10xt) (6.02×1023 alms)

(-2x15°C) (lelect) = 1.25 x10'elect.

= 4.74×1019 at-1 (29 elect) = 1.23×10 elect.

Unless otherwise stated, use a coordinate system with +x to the right and +y upward, toward the top edge of the page.

Section 1.

Questions 1–2: Copper has a density of 8960 kg/m³ and an atomic mass of 63.55 g/mol. One atom of copper has 29 protons and 29 electrons. Avogadro's number is 6.02×10^{23} atoms/mol. A certain copper BB has a volume 5.00×10^{-10} m³.

- 1. How many electrons are in the BB?
 - (a) 1.23×10^{21} electrons
 - (b) 4.24×10^{19} electrons
 - (c) 2.46×10^{19} electrons
 - (d) 2.70×10^{18} electrons
 - (e) 7.82×10^{19} electrons
- 2. If the BB has an electric charge of -2 nC, how many additional electrons did it gain?
 - (a) 3.2×10^{28} electrons
 - (b) 1.25×10^{10} electrons
 - (c) 1.25×10^{19} electrons
 - (d) 2.0×10^9 electrons
 - (e) 8.0×10^{11} electrons
- 3. Two equal magnitude charges are shown in four different configurations.
 - A. (§

В.

In which case(s) does the net electric field at the dot point to the left.

- (a) A only
- (b) D only
- (c) C only
- (d) C and D
- (e) A, C, and D

Questions 4–5: A proton +q is near a neutral atom (the circle) as shown below.

4. What is the direction of the force by the proton on the neutral atom?

- (b) to the left, -x
- upward, +y
- downward, -y
- (e) none of the above because it is zero

5. Which of these diagrams shows the polarization of the neutral atom?

elector cloud affected to to.

- (a) A
- (b) В
- C

Questions 6-8: You have four metal disks with charges: $q_A = -8.0 \,\mu\text{C}$, $q_B = -2.0 \,\mu\text{C}$, $q_C = +5.0 \,\mu\text{C}$, and $q_D = +12.0 \ \mu C.$

- 6. Holding them with insulators, you bring two disks together so that they touch. Then you separate them. You measure the resulting charge of each disk and find that it is $+5.0 \mu$ C per disk. Which two disks did you bring together?
 - A and B (a)
- Qtotal = +5+5= 19aC.
- (b) B and C
- C and D
- B and D
- A and D
- Before touch in Ontil = 10pc. So disks de B ad D since
- 7. If you touch disk A and disk B together,
 - (a) A will gain electrons
 - (b) A will gain protons
 - A will lose electrons
 - A will lose protons

- B+fp = -2+12=10ac
- A loses nog charge so it 185+ electras

- 8. If you touch disk C and disk D together,
 - (a) C will gain electrons
 - (b) C will gain protons
 - (c) C will lose electrons
 - (d) C will lose protons

C gains + charle. The only way for a conductor to do this is to lose electrons.

Questions 9-10: Use this image to answer each of the following questions.

- 9. Which sphere is a neutral insulator in an applied electric field (due to other charges not shown) that is to the right?
 - (a) A
 - (b) B
 - (c) C
 - (d) D
 - (e) O
- polarecka of chas
- 10. Which sphere is a neutral conductor in an applied electric field (due to other charges not shown) that is to the left?
 - (a) M
 - (b) N
 - (c) C
 - (d) D
 - (e) O
- polorente of sphere with total surface

 change = 0

Questions 11–13: Three charged spheres are arranged as shown below. In the figure, d = 4 cm and q = 1 μ C.

- 11. What is the magnitude of the force by the particle of charge -2q on the particle of charge -q?
 - 5.6 N (a)
 - (b)
 - 2.8 N (c)
- F=(9x10)(2)(1x156)(1x156)(1x156) > F-27

- (d) 22 N(e) 11 N $= \frac{1}{6} 25 \text{ N}$ 12. What is the magnitude of the net force on the particle of charge -q? Fyr

 (a) zero $f_{qz} = \frac{9 \times 69}{4} \frac{(4)(1 \times 6)(1 \times 6)}{(1 \times 6)} \frac{(1 \times 6)}{(1 \times 6)}$ (b) 17 N(c) 11 N(d) 22 N $= 5.6 \text{ N} \text{ N} \times dI \text{Net}$ = 11.25 N 5.6 N = 5.6 N Net
- - to the right, +x
 - (b) to the left, -x
 - (c) none of the above because it is zero

Questions 14–16: A dipole made of charged spheres with q = 8 nC, d = 4 cm is shown below?

- 14. What is the magnitude of the electric field due to -q at the location of the dot?
 - 45,000 N/C (a)
 - 80,000 N/C (b)
 - (c) 57,600 N/C
 - (d) 90,000 N/C
 - (e) 28,800 N/C
- $E = (9x10^{9})(8x10^{9}) = 28,800 \frac{N}{c}$
- 15. What is the angle with respect to the horizontal for the electric field due to -q at the location of the dot?

4

- 37° (a)
- (b)
- 30° (c)
- 53° (d)
- (e) 60°

21. What is the dielectric constant K of the insulator that is between the plates?

(a)
$$1.1 \times 10^{13}$$

(b) 2.3×10^{9}
(c) 4.5×10^{9}
(d) 1.1×10^{9}
(e) 5.6×10^{8}

(7) (0.1×10^{13})
(8) (0.5×10^{13})

Questions 22-25: Two electrodes, shown below, are connected to a battery with a potential difference of 1 V. The dotted lines are 1 cm apart.

- 22. What is the magnitude of the electric field between the plates?
 - (a) 4 V/m

- (b) 50 V/m
 - - 25 V/m
- 100 V/m
- E = 1/2 = 25 25
- 23. What is the direction of the electric field between the plates?
 - to the right (a)
 - (b) to the left
 - (c) upward
 - (d) downward
 - (e) none of the above because it is zero

(a) 0 V $V_{B} - V_{A} = -E_{x} (X_{B} - X_{A})$ in the section travels from point A to point B, what is its change in electric potential energy, ΔU , in eV?

(a) 0 V $V_{B} - V_{A} = -E_{x} (X_{B} - X_{A})$ in $V_{A} - V_{A}$

$$U_f - U_i = \xi(V_f - V_i)$$

$$= -e(0.25V - IV)$$

$$= e(0.75V)$$

$$= [0.75eV]$$

and former (own V)