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Goals

You should be able to measure the broadening of the reflected signal from a rotating body to
determine the rate at which it rotates.

Objectives

If you learn to .......

Use a simulated radio telescope to acquire pulse spectra.

Read a pulse spectrum to find the frequency shift of the pulse.

Measure the Doppler-shift to interpret the change in frequency between the outgoing pulse
and the reflection.

You should be able to ......

Determine the radial velocity of Mercury and calculate its period.

Calculate the rotational period of Mercury.
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Equipment

Sky and Telescope Reprint LE 11, pocket calculator, IBM-compatible computer running CLEA software for Radar
Measurement of the Rotation Rate of Mercury.

Introduction

Because Mercury is a small planet whose surface features have low contrast, and because it is so close to the sun that it is
rarely visible against a dark sky, it is difficult to determine how fast it is rotating merely by looking at it from the earth.  In
recent years, however, radar techniques have proven most effective in measuring its speed of rotation.  The method you
will employ here actually has wider application than just the measuring the rotation of Mercury.  It can be used to study
the behavior of other planets as well, from cloud-covered Venus to the rings of the major planets, to the smallest aster-
oids.

The technique of this lab is described below and in Reprint LE 11 by Hoff and Schmidt.  The basic idea is to use a radio
telescope to send short pulse of electromagnetic radiation of known frequency towards the planet Mercury and then to
record the spectrum (frequency versus intensity) of the returning echo.  Depending on the relative position of the earth
and Mercury, the pulse will take between 10 minutes and half hour to travel to Mercury, bounce off, and return.

By the time the pulse has reached Mercury, it has spread out to cover the entire planet.  Because the planet’s surface is a
sphere, the pulse hits different parts of the planet at different times, however.  The pulse first hits the surface at a point
directly on a line between the centers of the earth and Mercury (the “sub-radar point”), and few microseconds later from
points further back, toward the edges of the planet.  Thus we wait for the first echo, from the sub-radar point, and then by
looking at the returning echoes at succeeding times, each a few microseconds later than the next, we get information
about different parts of Mercury’s surface.

The frequencies of the returning echoes are different from the frequency of the pulse sent out because the echoes
have bounced off the moving surface of Mercury.  Any time a source of radiation is moving radially (towards or
away from the observer) there will be a Doppler shift in the received frequency that is proportional to the
velocity along the line of sight.

Figure 1
THE DOPPLER SHIFT
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There are two motions of Mercury that can produce such a shift: its orbital velocity as a whole around the sun, and its
rotation around its axis.  The first echo, from the sub-radar point, is shifted in frequency only by the orbital velocity of the
planet as a whole.  We can calculate how fast the planet is moving with respect to the earth from the amount of the shift,
but we can’t tell how fast it’s rotating (spinning) because the component of the rotational velocity of the surface of
Mercury is perpendicular to our line of sight at this point (see Figure 1), and so there is no additional frequency shift.
The echoes that come in after the sub-radar echo, however, show additional shifts because they come from further back
where the rotational velocity is more directly along our line of sight.  Because of the rotation of Mercury,  one edge of the
planet is moving a towards us a little faster than the planet as a whole, and the other edge is moving away towards us a
little slower than the planet as a whole (See Figure 1). So, due to the Doppler effect,  part of the returning echo (from the
faster moving edge of Mercury) is at a slightly higher frequency, and part of the returning echo (from the slower moving
edge) is at a slightly lower frequency as shown in Figure 2:

We measure the amount of this frequency shift and apply our knowledge of the Doppler effect to calculate the velocity of
the surface of Mercury, and from this,  its period of rotation.

Before you proceed any further, please read Sky and Telescope reprint LE 11 carefully to get an idea of the details of the
method.  Then answer these questions:

1.  What was the earliest method used to determine the rotation period of Mercury?

2. What was the difficulty of applying this method?

3. Until the radar measurements, what was the accepted rotation period of Mercury?

Frequency of Returning Echo (Hz difference from Transmitted Frequency)

Lower Frequency Echo from side moving towards Earth a little slower

(Rotational Velocity component away from earth)

Higher Frequency Echo from side moving towards Earth a

little faster (Rotational Velocity component towards earth)

Figure 2
FREQUENCY OF RETURNING ECHO
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Using the CLEA Radio Telescope

Overall Strategy

Listed below is the overall plan of action for this lab:

1. Turn on radio telescope.
2. Calculate position of Mercury and point telescope to it.
3. Send out pulse.
4. While waiting for echo to return, calculate geometrical parameters for echoes at 120, 210, 300, and 390 microsec-

onds after the arrival of the sub-radar pulse.
5. Measure the highest and lowest frequency shift of the returning echoes from the four delayed echoes.
6. Record these data and then use them to calculate the rotation velocity of the equator of Mercury from each of the

four delayed echoes.
7. Calculate the rotational period in days from the velocity and the known circumference of the planet.
8. Check answers for reasonableness and make sure that all requested information is provided.

Getting Started

This exercise simulates the operation of a large radio telescope used to determine the rate of rotation of a planet by
Doppler radar.  Begin by selecting Log In on the main menu, and fill in the requested information.  After completing the
log-in, select Start on the main menu. The control panel that appears has only three push-button controls, as well as
displays to show the frequency the telescope is tuned to and the coordinates it is pointed to in the sky.  Begin by pressing
the Tracking  button to turn on the sidereal drive so that the telescope will track the planets as the earth turns.  This will
activate the other controls menu.

If you already know the coordinates and the distance from the Earth to the target planet, press Set Coordinates, respond
OK  to the message that appears, and enter the coordinates and distance on the dialog box that appears.  When you have
finished press OK  and the telescope will begin moving to point to the target.  In most instances, however, you will not
have a set of planetary coordinates.  If this is the case, do not press Set Coordinates yet (or if you have already done so,
press Cancel on either the message or dialog that follow).  Select Ephemeris from the main menu;  this activates a
program that calculates the position of a planet for any date and time.  If your instructor has given you a specific date and
time, enter them on the dialog that appears, otherwise use the default (current date and local time) values. Press OK  to
compute the ephemeris, which will appear as a table on the screen. You will want to record the distance between the earth
and Mercury (AU) and the expected length of time for the pulse to return.  Leave the ephemeris window on the screen or
minimize it (do not close it), and press Set Coordinates.  Respond Yes to Use Computed Values? and the telescope will
begin slewing (moving rapidly) to point to the planet.  (If you left the Ephemeris Computation window on the screen it
will minimize when the slew starts.  If you minimized it, it remains minimized and you can reopen it for reference.)

When the telescope move is complete, the red Slewing light will go out, a Slewing Completed message will appear on
the display screen, and the telescope’s pointing coordinates will appear on the control panel.  (If you now turn off the
drive by pressing the Tracking  button you will notice that the right ascension increases as the Earth turns.  Be sure to turn
the tracking back on right away, so that the telescope doesn’t lose its aim at the planet.  You can always repeat the steps in
the previous paragraph if you want to make sure you’re pointed at Mercury, however.)  When you are satisfied that the
telescope is aimed correctly, press the Send Pulse button to transmit a radar pulse towards the planet.  A Pulse Sent
message will appear on the screen, along with the estimated time until reception of the return pulse.  The message appears
in yellow when the reflected pulse is returning, and the time appears in red during the last 30 seconds until reception.

A window showing the initial spectrum (frequency versus intensity) of the pulse also appears on the screen when the
pulse is transmitted.  This window will minimize itself after 10 seconds.  When that occurs you will see an animated
display on the telescope screen.
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This display shows the correct positions of Mercury, Venus, the Earth, and the Sun on the date of the Mercury coordinates
you have used.  Sketch them for further reference.  The bright radar pulse moves toward Mercury and then the fainter
echo returns.  (The pulses move at the speed of light relative to the scale of the display.  The distances on the display are
correctly scaled, but the images of the disks of Sun, Earth, and Mercury are much too large for this scale.)

If for any reason you wish to stop waiting for a return pulse, press Send Pulse again, and respond No to the message that
appears.  While you are waiting for the return pulse, you can calculate d, x, and y for each of the time intervals (120, 210,
300, and 390 x 10-6 seconds), and write them down on the data sheet included in the lab write-up.  (Refer to the Sky and
Telescope reprint and to the later section of this write-up Calculating the Rotational Velocity of Mercury from the
Data for instructions on how to calculate d, x, and y).

Taking Data

The return pulse is spread out over a few hundred microseconds in time, due to the curved surface of the planet.  A series
of five windows will appear on your screen when the pulse is received.  These windows show snapshots of the spectrum
of the returning echo beginning at the instant of reception, followed by another 120 microseconds later, and three more at
successive 90 microsecond intervals.  These pulse spectra show a certain amount of noise, or static, which increases with
the later-arriving pulses, since they are weaker.  Compare the appearance of the received pulse with the initial pulse.  You
will note that the initial pulse, which is of course stronger, appears much smoother and sharper.

Clicking the cursor on any visible portion of a data window will bring that window to the top for observation and mea-
surement.  Clicking the down arrow in the upper left corner will reduce the window to an icon. An iconized window can
be re-displayed by double clicking on it.  A popup menu under Pulse on the main menu provides for reducing and
displaying all the data windows at once, as well as recording measurements made on the pulse profiles.  Data windows
cannot be closed (unless a new radar pulse is transmitted), so that they can always be re-measured, if necessary.

To make a measurement, simply press and hold the left mouse button and move the cursor to the point to be measured.
When the button is down the cursor becomes a cross-hair, and the lateral position of the mouse appears at the bottom of
the screen as an X coordinate (measured in pixels), and a frequency shift in Hz from the zero position.  For the sub-radar
echo (∆T = 0) you simply measure the central frequency.  But for all the other delayed echoes, you must measure the
positions of the left and right “shoulders” of the plots, the frequencies where the intensity just begins to fall off to zero.
These represent echoes from the parts of the planet that are turning towards you and away from you the fastest.  On some
of the spectrum plots these points are quite obvious and on others they are not.

Figure 3
PULSE SENT AND ECHO
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When you have positioned the vertical cross-hair on the left “shoulder” of the plot, double click the left mouse button.  A
red arrow will appear on the screen, along with the measured position in Hz.  To measure the right “shoulder”, follow the
same procedure, but double click the right mouse button.  A blue arrow will then appear at the measured position.
 (The single pulse on the sub-radar,  t = 0, window may be measured by double clicking either mouse button.)  If you
want to change a measurement simply reposition the mouse and again double click the appropriate mouse button.  The
associated arrow will move to the new location.  (It’s possible to erase sections of the graph by repositioning the arrows.
To restore the plot, iconize the window and then re-display it.)  You will  want to write down the results of all of these
measurements on the data sheet included in this write-up.  (It’s always good scientific practice to keep paper as well as
computer records, if possible.)

After you have measured a pulse window  (or all of them), select Record Measurements under Pulse on the main menu.
A data window will appear recording all the measurements you have made.  If you have not measured all the pulses, the
remaining fields on the measurement window will be blank, and the next unmeasured pulse window will appear on top.

If you have completed all the measurements, a message will inform you of this, and the pulse windows will be minimized
when you respond to the message.

Recording and Printing Data

Once you have recorded the measurements of a pulse window (except the t=0 window), the Work Sheet selection on the
main menu is activated. Select Work Sheet and then Display, and the worksheet window is displayed.  This worksheet is
the same as the data table appearing on the back of your Laboratory Exercise,  and you should fill in the data table with
pen or pencil before you transfer the numbers to the computer.  The computer only records raw data.  It does not do the
numerical calculations for you and it is up to you to make sure that the calculations are correct and are entered in their
appropriate locations.

Follow the directions in your exercise to compute and fill in the entries in each column of the work sheet.  (Note the
notation used to indicate powers of ten in the work sheet entries. Ten to the power is indicated by E so that 5.6 x 10-8

would be written as 5.6E-08.  If this is unfamiliar to you ask your instructor to explain it.)  As you fill in each column,
you may at any time press the Check button at the end of the column.  The values you have entered will be checked for
“reasonableness”, and you will be informed if any of your values are clearly in error.  You can go back to the pulse
windows to make new or repeat measurements at any time Simply close the worksheet (Work Sheet..Close), and then
select Pulse.  Remember to record your measurements before returning to the work sheet.

If for some reason you want to completely recalculate a column, you can erase it.  Select Work Sheet..Erase..Column
(or All ) from the main menu.  This will also erase the measurements.

Figure 4
MEASUREMENT  OF  THE RETURN ECHO
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To re-enter the measurements, select Work Sheet..Close, then select Pulse..Record Measurements, then back to Work
Sheet.. Display”.  Keep in mind that Work Sheet..Close does not destroy any table entries, but Work Sheet..Erase does.

When you have completed all entries in the work sheet and checked them for reasonableness, select Work Sheet..Print
for a hard copy of the table to turn in with your exercise.

Calculating the Rotational Velocity of Mercury From the Data

You will want to use the following formulas to carry out the steps in transforming your raw data into values of the rotation
period of Mercury.  Make sure you have converted all measurements to the proper units as you go along.  The first three
items are geometrical terms needed to convert the measured velocities, which are from points not on the equator of
Mercury, into velocities at the equator of Mercury.  Since you know the anticipated time delays of the four echoes (120,
210, 300, and 390 µsec ) you can calculate these items, d, x, and y,  even before you have received the echoes.  The other
calculations are made with data measured from the spectrum of the echoes.

Figure 5
GEOMETRY  OF MERCURY’S ROTATION

Mercury’s rotational velocity, V, is calculated form these geometrical relationships.  R is the Planet’s radios, d, is the delay
distance, and Vo is the measured component of the rotational velocity parallel to the line of sight at the point.

Item 1:  Calculating d (in meters).  This is the distance the delayed beam has travelled beyond the sub-radar point.  We
simply use distance = rate x time, but since we are measuring an echo, which has to travel over the same path twice
(down and back) we take half this value.

Where c is the speed of light in meters per second (3 x 108 meters/sec) and ∆∆∆∆∆t  is the time delay for the particular pulse in
seconds.  (Note that one microsecond = 1 µsec =  10-6 seconds).

(( ))d c t== ∆∆ 2
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Item 2:  Calculating x.  This is the distance parallel to our line of sight from the center of Mercury to the point from
which the echo comes back.  It is just the radius of Mercury minus the distance d calculated in item 1, where the radius of
Mercury is R

merc 
= 2.42 x 106 meters.

Note that since the echoes we measure come back from points not far back (only a few kilometers) from the sub-radar
point, x will be only slightly smaller than R.

Item 3:  Calculating y.  This is the distance perpendicular to our line of sight to the extreme outer edge of the region of
Mercury from which the echo comes back.  It is found by noting that y is one side of a right triangle whose hypotenuse is
the radius of Mercury, and whose other side is x.

Item 4:  Calculating ∆∆∆∆∆f
total

.  This is the shift in frequency due to the rotational velocity alone.  You need simply note that
one side of Mercury that is rotating toward you as fast as the other side is rotating away.  So the difference in the fre-
quency shifts from the two extremes edges, ∆∆∆∆∆f

right
 and ∆∆∆∆∆f

left
  is twice the shift due to rotational velocity.

Item 5:  Calculating ∆∆∆∆∆f
c
 .  This is the shift in frequency corrected for the fact that this is an echo—the shift is twice that

produced by a source which is simply emitting at a known frequency.  This is because the pulse arriving at Mercury
appears shifted as seen from the surface, and then it is shifted again because the surface of Mercury is moving as seen
from the earth.

Item 6:  Calculating V
o
 .  This is the component of the rotational velocity of the edge of Mercury along the line of sight at

the point from which the echo returns.  We simply apply the Doppler equation to the observed frequency shift.

Where, as before, c is the speed of light in meters per second, and f is the unshifted transmitted frequency of the pulse
(which can be read from the control panel of the radio telescope, but note that f must be in Hertz, Hz, not Megahertz.  On
the telescope display 1 MHz = 106 Hz.)

Item 7:  Calculating V.  This is the equatorial rotational velocity of the planet Mercury, and is just your measured velocity
times a geometrical factor, R

merc
/y which corrects for the fact that the velocity you measure is only the component of the

rotational velocity directed along your line of sight, and that the component perpendicular to the line of sight produces no
measurable Doppler shift.

x R dmerc== −−

(( ))y R xmerc== −−2 2

(( ))∆∆ ∆∆ ∆∆f f ftotal right left== −− 2

∆∆ ∆∆f fc total== 2

(( ))V c f fo c== ∆∆

(( ))V V R yo merc==
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Item 8:  Calculating P
rot

.  For each of the delayed echoes you can now calculate a rotational period for the planet by
dividing the circumference of Mercury, 2πππππR

merc
 , by its velocity , and dividing the result (which will be in seconds), by the

number of seconds in a day:  86,400.

Final Results

When you have calculated  P
rot

 for each of the delayed echoes, make sure your answers are reasonable.  Then compute an
average period of rotation in days for Mercury from your values.

The Rotation Period of Mercury = _________________________ days.

What is the percentage difference between this period and the accepted value of 59 days?

 ________________________________.

The Orbital Velocity of Mercury

You can use your value of frequency shift for the echo from the sub-radar point to calculate the orbital velocity of
Mercury.  Just note that the shift you get must be divided by two to account for the doubling due to an echo.  Apply the
Doppler formula to the shift to calculate the speed of the planet.  Negative speeds are speeds of recession, and positive
speeds are speeds of approach.  Show the data you use and the calculations below. Express your answer in km/sec  (1 km
= 103 meters)

Orbital Velocity of Mercury: ______________________________________

(( ))P onds R Vrot mercsec == 2ππ

Prot −−
×× ==

59
59

100%
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Sketch the relative positions of earth, sun, and mercury, along with the direction of Mercury’s orbit.  Does your answer
for the orbital velocity seem reasonable?  Explain.

Extra Credit Problem

The relative sizes of the orbits of the planets were known (from Kepler’s laws) long before the actual number of kilome-
ters in an astronomical unit was measured.  The delay in the return time of a radar signal provides a neat and accurate way
of measuring the astronomical unit (AU). Your ephemeris calculations gave you the distance of Mercury from the earth in
AU.  Use this value, and the measured time for the two-way travel of the pulse to calculate the number of kilometers in an
AU.  For this purpose, note that c, the speed of light, is 2.998 x 105  kilometers/second.  Show your work carefully below.
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Mercury Data Table

delta t (microsecs) 120 210 300 390

d (meters)

x (meters)

y (meters)

freq - left (Hz)

freq - right (Hz)

delta ftotal  (Hz)

delta f
c
 (Hz)

V
o
(meters/sec)

V (meters/sec)

Prot (days)

delta f for sub-earth pulse (T=0) _________________________

vorbital _____________________________


	Contents
	Goals 
	Objectives 
	Equipment 
	Introduction 
	Using the CLEA Radio Telescope 
	Overall Strategy 
	Getting Started 
	Taking Data 
	Recording and Printing Data 
	Calculating the Rotational Velocity of Mercury From the Data  
	Final Results 
	The Orbital Velocity of Mercury 
	Extra Credit Problem 


