Physics 1200	
Quiz 1, Spring 2013, Form:	Α

Date:

You must include units with all quantities (that have units). You must show your work or explain your reasoning in words for all questions including multiple-choice questions. An answer with no calculation or explanation will not receive full credit.

1. A displacement vector is shown in Figure 1.

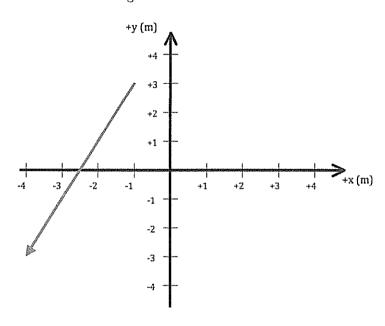


Figure 1: A displacement vector.

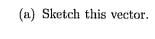
(a) What are the coordinates of the tail of the vector?

$$X = -1m$$
, $y = 3m$
or $(-1,3)m$

(b) What are the coordinates of the head of the vector?
$$\chi = -4m$$
) $\gamma = -3m$ or (-4) (c) Write the vector (in component form).

2. An object was at
$$(4, 2, 1)$$
 m and is displaced $(-1, 3, 2)$ m. What is its (new) position after it moved?

New position = $\delta(d \rho \circ s) + d \circ p (a \circ e) = (4, 2, 1) m + (-1, 3, 2) m$


= $(4, 2, 1) m + (-1, 3, 2) m$

3. (a) An object has a speed 2 m/s in the -y direction. What is its velocity (vector)?

$$\vec{v} = 2(0, -1, 0) = (0, -2, 0) \frac{\pi}{3}$$

(b) An object has a speed of 5 m/s in the +x direction. What is its velocity (vector)?

$$\vec{V} = S(1,0,0) = (5,0,0$$

(b) What is the magnitude of its velocity (i.e. speed)?

$$|\vec{v}| = \sqrt{2^2 + 4^2} = \sqrt{20} = 4.5 \frac{3}{3}$$

(c) What is its direction (i.e. its unit vector)?

4. An object has a velocity $\vec{v} = (-2, 4, 0)$ m/s.

$$\hat{V} = \frac{\nabla}{|\nabla|} = \frac{(-2, 4, 0)}{\sqrt{20'}} = (-0.45, 0.89, 0)$$

(d) The object is traveling:

(e) The object is traveling:

(f) The object is traveling:

- i. outward
- ii. inward

(g) What is
$$-\vec{v}$$
? (Express it in component form.)

$$-\vec{V} = -(-2,4,0) = (2,-4,0) = (3,-4,0) =$$

(h) Sketch $-\vec{v}$.

5. At t=0, a ball is at the position (-6,9,0) m and has a velocity $\vec{v}=(2,-3,0)$ m/s. What is its position at the following clock readings: t = 2 s, t = 4 s, and t = 6 s? Show your calculations and write your answers in the table. new pas = ald pas + D. At

t (s)	position (m)
0	(-6,9,0)
2	(-2,3,0)
4	(2,-3,0)
6	(6:-9:0)

$$t=2:$$
 = $(-6,9,0)+(2,-3,0)(2s)$
= $(-2,3,0)m$

$$-(-2,3,0)m$$

$$=(-2,3,0)m+(2,-3,0)(2)$$

=(2,-3,0)m

$$t = (2, -3, 0) + (2, -3, 0)(2)$$

Name:	Lev	
	7	The state of the s

Game

Here is a VPython program of a ball that rolls across a level track with uniform motion (It is similar to the one you wrote in class but with two lines missing at the locations of the comment # characters.) Suppose that position is in meters, time is in seconds, and velocity is in m/s.

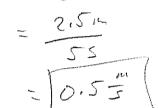
```
from visual import *
   track=box(pos=vector(0,-0.075,0), size=(3,0.05,0.1), color=color.white)
   ball=sphere(pos=vector(1.5,0,0), radius=0.05, color=color.cyan)
   ball.v=0.6*vector(-1,0,0)
   dt = 0.01
10
   while 1:
12
       rate (100)
13
15
```

Questions

- 3m (see size attribute) 1. What is the length of the track?
- 2. Is the ball's initial position at the right side of the track, at the left side of the track or somewhere in the middle? X = 0.75 M. The middle of the 3m. track so X = (.5.4)

 3. What is the speed of the ball? (Remember, speed is the magnitude of velocity. Thus, speed is not a find a f
- vector.) 0.65 Show fall = (dvector(-1,0,0))4. Is the velocity of the ball to the left or to the right? (Or, is it zero?)
- Since ball. U.X Is neg.

5. On line 14, you want to update the position the ball after a time step dt. Write the appropriate line of code.


6. On line 15, you want to update the clock reading t by an amount dt. Write the appropriate line of code.

6. The x-position as a function of time for an object is shown in Figure 2. What is the x-velocity of the object?

Vx = Slape

$$=\frac{1.5-(-1)^{m}}{5-0.5}$$

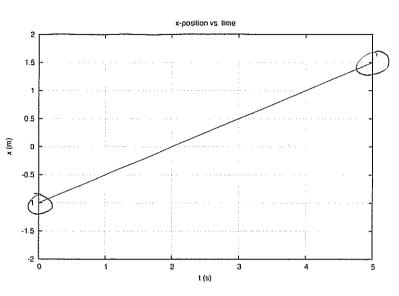
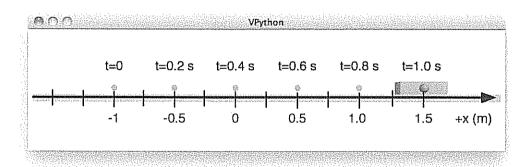



Figure 2: A x(t) graph.

7. An object travels to the right. Its position at certain clock readings is shown below.

(a) What is the object's x-velocity?

$$\sqrt{\chi} = \sqrt{\Delta t}$$
at $t = 0.5$ s?

$$V_{x} = \frac{\Delta x}{\Delta t} = \frac{-0.5 - (-1)}{0.2 - 0} = \frac{0.5 \cdot m}{0.25} = \begin{bmatrix} -0.5 & -0.5 & -0.5 \\ 0.2 & 0.2 & -0.5 \end{bmatrix}$$

(b) What is the object's x-position at t = 0.5 s?

halfway between
$$x=0$$
 and $x=0$, $t=0.5$ so $t=0.25$ m at $t=0.5$ s

(c) What is the object's x-position at t = 5.0 s?

(c) What is the object's x-position at
$$t = 5.0 \text{ s}$$
?

$$X_t = X_t + V_x \Delta t \qquad \text{choose } t = 0 \text{ and } \Delta t = S_x.$$

$$= -1 + (2.5^{2})(S_x)$$

$$= -l_m + (2.5\frac{m}{3})(55)$$